

Air Pollutant: Business Brief

Document providing an overview of the process that Oracle took in publishing its air pollutant inventory

January, 2026, Version [\[2.0\]](#)

Copyright © 2026, Oracle and/or its affiliates

Purpose

This document provides an overview of the process that Oracle took in publishing its air pollutant inventory for the first time in 2023. It is hoped that this business brief will help other organizations to inspire further air pollutant reporting and the implementation of air pollutant mitigation measures.

Background

“99% of the world’s population live in places where air pollution levels exceed World Health Organization (WHO) guideline limits.” - World Economic Forum

Announced as a member at COP27, Oracle’s air pollution work has been driven principally through membership of the ‘Alliance for Clean Air’. Launched in 2021 by the World Economic Forum and the Clean Air Fund, The Alliance for Clean Air is the first global private sector initiative to tackle air pollution. The private sector contributes to air pollutant emissions through activities such as the combustion of fuel, consumption of electricity, disposal of waste and the transportation of goods, materials and passengers.

The reporting of greenhouse gas emissions is common practice for many large organizations. Air pollutant emissions have however until now been largely unquantified. This is partly because there has not been a comprehensive set of methods that would allow emissions from the various key sources along value chains

to be identified and quantified, and partly because of a lack of regulatory pressure. The introduction of the Corporate Sustainability Reporting Directive (CSRD) and the EU Commission's adoption of the European Sustainability Reporting Standards (ESRS) has helped to bring air pollutant emission quantification to the attention of reporting organizations. The publicly available guidance referenced and used in this business brief will hopefully help make air pollutant emission reporting more widely adopted within the private sector.

Air Pollutant Quantification

Oracle's air pollutant inventory follows the process suggested in the *Integrated Guide for Business Greenhouse Gas and Air Pollutant Emission Assessment*, a document developed by the Stockholm Environment Institute (SEI) with support from Climate and Clean Air Coalition (CCAC). The document is the update to the original '*Practical Guide for Business Air Pollutant Emission Assessment*' document.

The guide was reviewed by the CCAC Scientific Advisory Panel and enables organizations to quantify the air pollutant emissions along their value chains from key sectors. The guide focuses on quantifying the emissions of directly emitted particulate matter and concentrates on the air pollutants identified as having the largest impact on human health by the World Health Organization:

- Particulate Matter (PM_{2.5}, PM₁₀)
- Black Carbon (BC)
- Organic Carbon (OC)
- Sulphur Dioxide (SO₂)
- Nitrogen Oxides (NO_x)
- Ammonia (NH₃)
- Non- Methane Volatile Organic Compounds (NMVOCs)
- Carbon Monoxide (CO)

It provides methods for quantifying air pollutant emissions from six key sources: Electricity consumption, stationary fuel combustion, transport, industrial processes, agriculture and waste.

The next section provides a step-by-step walkthrough of the calculation process that Oracle followed for quantifying the air pollutant emissions from the consumption of electricity. Excel was used to perform the calculations; however the aim is to move to a systems-based approach.

Air Pollutant Emissions from Electricity Consumption: Worked Example

The Guide uses three 'Tiers' to estimate air pollutants, each tier representing a level of methodological complexity. This three-tier approach follows the Intergovernmental Panel on Climate Change (IPCC) emission inventory guidelines. Oracle used the Tier 1 method for quantifying electricity consumption air pollutant emissions, and the Tier 1 method is the approach outlined below.

The consumption of electricity from the national grid does not release air pollutant emissions at the point where the electricity is consumed, however the generation of electricity in fossil fuel or biomass power plants can be a large source of air pollutant emissions.

Step 1:

Oracle gathered the activity data for the reporting period. In the example here, it was the amount of electricity consumed globally across operations for the reporting period of fiscal year 2025, and fiscal year 2024 for comparison purposes. The same activity data is used in the Oracle greenhouse gas inventory.

Step 2:

Once Oracle had gathered the activity data, the starting point for quantifying emissions is to quantify the electricity generated from different types of power stations. This is calculated using the formula below:

$$EG_n = EC_T * P_n$$

- EG_n is the electricity generation using fuel and technology n (units: kWh): Examples of different fuels are hard coal, brown coal, gaseous fuels (e.g. natural gas), heavy fuel oil, light oil (e.g. diesel) and biomass.

- EC_T is the total electricity consumed at a particular part of the company's value chain: Oracle used the electricity consumption from our offices and data centres.
- P_n is the proportion of the consumed electricity that is generated using fuel and technology n: This can be substantially different country-to-country.

To estimate the consumed electricity by fuel and technology (P_n), Oracle used the World Bank database to gather data on the electricity generation by source (e.g. oil, coal, natural gas etc) of the countries that it operates in. As the World Bank database does not provide a detailed list of the type of coal and oil used, Oracle had to make assumptions that it was likely to be hard coal and heavy oil, as these are the majority used globally at this time.

Step 3:

Having determined the amount of electricity generated using a particular fuel and technology in a specific country (EG_n), for those fuels and technologies that use fossil fuels or biomass for electricity generation, the next step is to determine the amount of fuel that is consumed to generate EG_n . This is calculated following the formula below:

$$FC_n = (EG_n / Eff_n) * 0.0036$$

- FC_n : the fuel consumption for fuel and technology n (units: GJ)
- EG_n : is the electricity generation using fuel and technology n (units: kWh) – calculated in Steps 1 and 2
- Eff_n is the efficiency of technology n in generating electricity (fraction), and 0.0036 is the conversion from kWh to GJ

The efficiency of different power stations (Eff_n) is used to estimate the quantity of fuel consumed to generate electricity consumed. Specific values for Eff_n were not known, so Oracle used default values within the Guide to estimate the average efficiency of different types of power station.

Step 4:

Having estimated the fuel consumption associated with electricity use within the Oracle offices and data centres, Oracle then calculated the associated air pollutant emissions by multiplying the fuel consumption by fuel specific emission factors:

$$Em_k = FC_n * EF_{n,k}$$

- Em_k : the air pollutant emissions of the specific pollutant k
- FC_n : the fuel consumption for fuel and technology n (units: GJ) - calculated in Step 3
- Where $EF_{n,k}$ is the emission factor for pollutant k for fuel n

The emission factors used are those listed in the Guide (table 4.4.).

Step 5:

The air pollutant emissions were then sorted and published in the Oracle data sheet.

Summary:

The Guide is freely available to enable organizations to create air pollution emission inventories. Quantifying air pollutant emissions and creating a baseline analysis of a company's global air pollution emissions is a crucial first step to set the stage for mitigating action. Oracle will continue to work on refining its air pollutant emission inventory and look to set targets and objectives with a clear mitigation action plan.

Oracle is also working to embed air pollutant and greenhouse gas quantification into its software. More information about Fusion Cloud Sustainability can be found here: [Oracle Fusion Cloud Sustainability](#)

References:

- Integrated Guide for Business Greenhouse Gas and Air Pollutant Emission Assessment: Free to download [here](#)
- A Practical Guide For Business: Air Pollutant Emissions Assessment: Free to download [here](#)
- IEA data: available [here](#)
- World Bank, Data Bank: available [here](#)
- EMEP/EEA air pollutant emission inventory guidebook 2023: available [here](#)
- More information about Oracle's sustainability program and the inventory above in our data sheet can be found [here](#)
- World Economic Forum quote- article available [here](#)
- CSRD ESRS standards are available through the EFRAG Knowledge Hub: available [here](#)
- Alliance for Clean Air: information [here](#)

Call **+1.800.ORACLE1** or visit **oracle.com**. Outside North America, find your local office at: **oracle.com/contact**.

 blogs.oracle.com

 facebook.com/oracle

 twitter.com/oracle

Copyright © 2024, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Air Pollutant:

Business Brief